All News

 

+989373755404

Call us for more information

Search
News

Invention of shape-changing textiles powered only by body heat

textile
0
(0)

A breakthrough invention in wearable technology has the potential to change how we interact with the clothes we wear every day.

A new study led by researchers at the University of Minnesota’s Design of Active Materials and Structures Lab (DAMSL) and Wearable Technology Lab (WTL) details the development of a temperature-responsive textile that can be used to create self-fitting garments powered only by body heat. The study, led by graduate students Kevin Eschen and Rachael Granberry and professors Julianna Abel and Brad Holschuh was recently published in Advanced Materials Technologies.
“This is an important step forward in the creation of robotic textiles for on-body applications,” said Holschuh. “It’s particularly exciting because it solves two significant problems simultaneously: how to create usable actuation, or movement, without requiring significant power or heat, and how to conform a textile or garment to regions of the body that are irregularly shaped.”
The textiles resemble typical knits, except they are created using a special category of active materials — known as shape memory alloys (SMAs) — which change shape when heated.
In partnership with NASA, U of M researchers studied the unique dimensions of a human leg. They then subsequently designed, manufactured and tested an SMA-based knitted garment that can precisely conform to a leg’s topography.
“This technology required advancements on multiple scales,” said Abel. “At the material scale, we tuned it to respond to body temperature without added power. Structurally, we manufactured it to adapt to the complex shapes of the human body perfectly. At the system level, we created an operation that maps the mechanical performance of textiles to human anatomy. Each advancement is important, but, together, they create a functionality that didn’t exist before.”
These knits can be used in custom garments that can easily transform from loose to tight-fitting, and even bend in unique ways to conform to irregularly shaped regions of the body (e.g., the back of the knee). Examples of future use could be to create compression garments that are initially loose fitting and easy to put on which could subsequently shrink to tightly squeeze the wearer.
“This creates an exciting new opportunity to create garments that can physically transform over time, which has significant implications for medical, aerospace and commercial applications,” Holschuh said.
Next steps will be to integrate the textiles into full-sized garments, which could solve a variety of problems where fit and conformance to the body are important, such as medical-grade compression stockings.
The research was funded through a NASA Space Technology Research Fellowship and MnDRIVE.
Brad Holschuh is an assistant professor of apparel design in the College of Design, co-director of the UMN Wearable Technology Lab, and director of the Human Factors and Ergonomics graduate program. He is an expert in wearable technology, active materials, human factors design and engineering, and space suit design.
Julianna Abel is a Benjamin Mayhugh assistant professor of mechanical engineering in the College of Science and Engineering. She explores new uses for existing smart material fibers, develops new fibers with multifunctional properties, and manufactures functional fabric actuators.

provided by twin-cities.umn.edu

Other News

Organic Fabrics for Sustainable and Luxurious Living
news

Organic Fabrics for Sustainable and Luxurious Living

Differences in foot shape when wearing wedge-heeled shoes with elevated forefoot height and heel height
news

Differences in foot shape when wearing wedge-heeled shoes with elevated forefoot height and heel height

Introduction of pvc leather fabric
news

Introduction of pvc leather fabric

Original Leather in Pakistan; Natural Thick High Resistance Durability Soft Flexible
news

Original Leather in Pakistan; Natural Thick High Resistance Durability Soft Flexible

The best muga silk fabric
news

The best muga silk fabric

100% organic cotton fabric sofa
news

100% organic cotton fabric sofa

Buy The Latest Types of Velvet Fabric Upholstery
news

Buy The Latest Types of Velvet Fabric Upholstery

Silk Tricot Fabric; Circular Weaves Sturdy High Resistance Not Irritated Skin
news

Silk Tricot Fabric; Circular Weaves Sturdy High Resistance Not Irritated Skin

Purchase and price of genuine leather fabric types
news

Purchase and price of genuine leather fabric types

Waterproof upholstery fabric sofa trim
news

Waterproof upholstery fabric sofa trim

Hs Code for Tricot Fabric 100 Polyester
news

Hs Code for Tricot Fabric 100 Polyester

Impact of Digital Technologies on the Textile Industry
news

Impact of Digital Technologies on the Textile Industry

Crepe Lycra Fabric; Brown Pink Blue Gray Colors Plush Texture
news

Crepe Lycra Fabric; Brown Pink Blue Gray Colors Plush Texture

buy the best types of white silk thread at a cheap price
news

buy the best types of white silk thread at a cheap price

Pvc Coated Polyester Fabric
news

Pvc Coated Polyester Fabric

28 Types of Fabrics and Their Uses
news

28 Types of Fabrics and Their Uses

wholesale cashmere fabric suppliers
news

wholesale cashmere fabric suppliers

colored denim fabric purchase price + quality test
news

colored denim fabric purchase price + quality test

The price of Twill Fabric + cheap purchase
news

The price of Twill Fabric + cheap purchase

most profitable business is leather fabric
news

most profitable business is leather fabric

{"slide_show":3,"slide_scroll":1,"dots":"true","arrows":"true","autoplay":"true","autoplay_interval":3000,"speed":600,"loop":"true","design":"design-1"}

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

No Comments

Leave a Comment

Contact via Whatsapp Messenger Instagram Telegram Skype Call SMS Email
×
Whatsapp
Call
SMS
Open Close